Artificial intelligence applied to teaching and clinical research: results of a systematic review 2021–2025.

Authors

Keywords:

artificial intelligence; medical education; clinical research

Abstract

Medical education and clinical research are undergoing rapid transformation due to the exponential growth of biomedical literature. Between 2021 and 2025, five Artificial Intelligence (AI) tools emerged designed to optimize the search, analysis, and synthesis of evidence: Scispace, Consensus, Elicit, ResearchRabbit, and Scite. This systematic review analyzes their effectiveness, adoption, and educational potential based on 18 empirical studies. The findings show that these solutions do not replace conventional methods but do offer significant advantages for learning, research teaching, and academic work. Guidelines are proposed for their responsible integration into teaching programs, methodology workshops, formative research, and institutional projects.

Downloads

Download data is not yet available.

Author Biographies

Adrián Batista Valladares, General Directorate of Health, Isle of Youth

Especialista de I grado en Medicina General Integral. Máster en Enfermedades Infecciosas. Profesor Asistente.

Carlos Alexander Serrano Amador, Faculty of Medical Sciences on the Isle of Youth.

Especialista de I grado en Medicina General Integral. Profesor Asistente.

Heenry Luís Dávila Gómez, Faculty of Medical Sciences on the Isle of Youth.

Doctor en Ciencias Médicas. Especialista de I y II grado en Ginecología y Obstetricia. Profesor e Investigador Auxiliar.

References

1. Bornmann L, Mutz R. Growth rates of modern science: A bibliometric analysis of the number of publications and cited references. J Assoc Inf Sci Technol. [en linea] 2015 [citado 29 abr 2025]; 66(11):2215-22. Disponible en: https://www.researchgate.net/publication/262987677_Growth_rates_of_modern_science_A_bibliometric_analysis_based_on_the_number_of_publications_and_cited_references_Growth_Rates_of_Modern_Science_A_Bibliometric_Analysis_Based_on_the_Number_of_Publicatio

2. Castaño Castaño S. La inteligencia artificial en Salud Pública: oportunidades, retos éticos y perspectivas futuras: e202503017. Rev Esp Salud Pública [en linea] 2025 [citado 22 de Dic 2025]; 99(1):12 páginas. Disponible en: https://ojs.sanidad.gob.es/index.php/resp/article/view/1006

3. García Palomer D, Arretx Spoerer M. Evaluación cualitativa de modelos de inteligencia artificial generativa para resolución de preguntas clínicas de rehabilitación infantil [en linea] 2023 [citado 06 dic 2025] Vol. 18, Rehabilitación Integral. Rehabilitación Integral; p. 19–32. Disponible en: https://doi.org/10.51230/ri.v18i1.98

4. Wang, Futing, et al. "ELICIT: LLM augmentation via external in-context capability." arXiv preprint [Internet] 2024 [citado 11 Dic 2025]; 2410.09343. Disponible en: https://arxiv.org/abs/2410.09343

5. Zacarías Torres A del Ángel. Más allá de la Automatización: Inteligencia Artificial y sus Implicaciones en la Docencia y el Mundo del Trabajo. Ciencia Latina [en linea] 2023 [citado 22 de ene 2024]; 7(5):7473-87. Disponible en: https://ciencialatina.org/index.php/cienciala/article/view/8333

6. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. [en linea] 2021 [citado 29 mar 2025]; 372: 71. Disponible en: https://doi.org/10.1136/bmj.n71

7. Porzybót D, Golysheva I. Applications of artificial intelligence in medicine: a state-of-the-art review and future perspectives. European Journal of Management and Social Science [en linea] 2024; [citado 06 dic 2025] 5(12): 14-8. Disponible en: https:// EJMSS+2024+1_2

8. Thirunavukarasu AJ, Almajalid R, Ho AT. Large language models in medicine. Nature Medicine [en linea] 2024 [citado 06 dic 2024]; 29(8), 1930–40. Disponible en: https://doi.org/10.1038/s41591-023-02448-8

9. Moosavi A, Huang S, Vahabi M, Motamedivafa B, Tian N, Mahmood R, et al. Prospective Human Validation of Artificial Intelligence Interventions in Cardiology: A Scoping Review. JACC. Advances, [en linea] 2024 [citado 28 ago 2024]; 3(9), 101202. Disponible en: https://doi.org/10.1016/j.jacadv.2024.101202

10. Liu X, Cruz-Rivera S, Moher D, Calvert M, Denniston AK, SPIRIT-AI and CONSORT-AI Working Group. Reporting guidelines for clinical trials evaluating AI interventions: The CONSORT-AI extension. BMJ [en linea] 2020 [citado 06 dic 2024]; 370, m3164. Disponible en: https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30218-1/fulltext

11. Gallent-Torres C, Zapata-González A, Ortego-Hernando JL. El impacto de la inteligencia artificial generativa en educación superior: una mirada desde la ética y la integridad académica. ALIVIAR. Revista Electrónica de Investigación y Evaluación Educativa [en linea] 2020 [citado 28 ago 2024] 2023;29(2):1-21.Disponible en: :https://www.redalyc.org/articulo.oa?id=91676028011

Published

2026-02-02

How to Cite

1.
Batista Valladares A, Serrano Amador CA, Dávila Gómez HL. Artificial intelligence applied to teaching and clinical research: results of a systematic review 2021–2025. REMIJ [Internet]. 2026 Feb. 2 [cited 2026 Feb. 4];27(2). Available from: https://remij.sld.cu/index.php/remij/article/view/414

Issue

Section

Artículos de Revisión